Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 24, 2026
-
Abstract. Wetlands and freshwater bodies (mainly lakes) are the largestnatural sources of the greenhouse gas CH4 to the atmosphere. Great effortshave been made to quantify these source emissions and their uncertainties.Previous research suggests that there might be significant uncertaintiescoming from “double accounting” emissions from freshwater bodies andwetlands. Here we quantify the methane emissions from both land andfreshwater bodies in the pan-Arctic with two process-based biogeochemistrymodels by minimizing the double accounting at the landscape scale. Twonon-overlapping dynamic areal change datasets are used to drive the models.We estimate that the total methane emissions from the pan-Arctic are 36.46 ± 1.02 Tg CH4 yr−1 during 2000–2015, of which wetlands andfreshwater bodies are 21.69 ± 0.59 Tg CH4 yr−1 and 14.76 ± 0.44 Tg CH4 yr−1, respectively. Our estimation narrows thedifference between previous bottom-up (53.9 Tg CH4 yr−1) andtop-down (29 Tg CH4 yr−1) estimates. Our correlation analysisshows that air temperature is the most important driver for methane emissionsof inland water systems. Wetland emissions are also significantly affected byvapor pressure, while lake emissions are more influenced by precipitation andlandscape areal changes. Sensitivity tests indicate that pan-Arctic lakeCH4 emissions were highly influenced by air temperature but less bylake sediment carbon increase.more » « less
An official website of the United States government

Full Text Available